English

Write the relation in the Roster Form. State its domain and range R1 = {(a, a2)/a is prime number less than 15} - Mathematics and Statistics

Advertisements
Advertisements

Question

Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}

Sum

Solution

R1 = {(a, a2)/a is prime number less than 15}

∴ a = 2, 3, 5, 7, 11, 13

∴ a2 = 4, 9, 25, 49, 121, 169

∴ R1 = {(2, 4), (3, 9), (5, 25), (7, 49), (11, 121), (13, 169)}

∴ Domain (R1)

= {a/a is a prime number less than 15}

= {2, 3, 5, 7, 11, 13}

Range (R1)

= {a2/a is a prime number less than 15}

= {4, 9, 25, 49, 121, 169}

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Sets and Relations - Exercise 5.2 [Page 103]

APPEARS IN

RELATED QUESTIONS

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.


A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.


The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Determine the domain and range of the relations:

(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and}  \left| a \right| \leq 3 \right\}\]

 


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


If R = [(xy) : xy ∈ W, 2x + y = 8], then write the domain and range of R.


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______.


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


Let R be a relation from a set A to a set B, then


If (x − 1, y + 4) = (1, 2) find the values of x and y


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R7 = {(a, b)/a, b ∈ N, a + b = 6}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is equivalence


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Choose the correct alternative:

The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?


Choose the correct alternative:

Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?


Is the following relation a function? Justify your answer

R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×