Advertisements
Advertisements
Question
If R = [(x, y) : x, y ∈ W, 2x + y = 8], then write the domain and range of R.
Solution
R = {(x, y) : x, y ∈ W, 2x + y = 8}
\[\text{ As} y = 8 - 2x\]
\[\text{ For } x = 0, y = 8\]
\[\text{ For} x = 1, y = 6\]
\[\text{ For } x = 2, y = 4\]
\[\text{ For} x = 3, y = 2\]
\[\text{ For} x = 4, y = 0\]
\[\text { For } x = 5, y < 0\]
\[\text{ So, } y < 0 \text{ for all } x > 5\]
∴ Domain (R) = {0,1,2,3,4} and Range (R) = {0,2,4,6,8}
APPEARS IN
RELATED QUESTIONS
Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.
- Write R in roster form
- Find the domain of R
- Find the range of R.
Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?
f is a relation from A to B
Justify your answer in case.
Find the inverse relation R−1 in each of the cases:
(ii) R = {(x, y), : x, y ∈ N, x + 2y = 8}
Determine the domain and range of the relations:
(i) R = {(a, b) : a ∈ N, a < 5, b = 4}
Let A = {a, b}. List all relations on A and find their number.
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R implies (b, a) ∈ R
Justify your answer in case.
The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?
Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is
If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is
R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is
If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is
If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)
Write the relation in the Roster Form. State its domain and range
R6 = {(a, b)/a ∈ N, a < 6 and b = 4}
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
Select the correct answer from given alternative.
A relation between A and B is
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R2 = {(1, 5), (2, 4), (3, 6)}
Answer the following:
R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric
Answer the following:
Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b)/|a − b| is even} is an equivalence relation.
Answer the following:
Show that the following is an equivalence relation
R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R2 = {(–1, 1)}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R3 = {(2, –1), (7, 7), (1, 3)}
A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Discuss the following relation for reflexivity, symmetricity and transitivity:
The relation R defined on the set of all positive integers by “mRn if m divides n”
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is transitive
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is equivalence
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
Is the following relation a function? Justify your answer
R2 = {(x, |x |) | x is a real number}
Given R = {(x, y) : x, y ∈ W, x2 + y2 = 25}. Find the domain and Range of R.
If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.
Is the given relation a function? Give reasons for your answer.
s = {(n, n2) | n is a positive integer}