English

Is the given relation a function? Give reasons for your answer. s = {(n, n2) | n is a positive integer} - Mathematics

Advertisements
Advertisements

Question

Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}

Sum

Solution

s = {(n, n2) | n is a positive integer}

Therefore, element n is a positive integer and the corresponding n2 will be a unique and distinct number, as square of any positive integer is unique.

Therefore, every element in the domain has unique image.

A relation is said to be function if every element of one set has one and only one image in other set.

Hence, s is a function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations and Functions - Exercise [Page 28]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 2 Relations and Functions
Exercise | Q 10.(iv) | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.


The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Determine the domain and range of the relations:

(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and}  \left| a \right| \leq 3 \right\}\]

 


Let A = (xyz) and B = (ab). Find the total number of relations from A into B.

 

Let A = [1, 2, 3, ......., 14]. Define a relation on a set A by
R = {(xy) : 3x − y = 0, where xy ∈ A}.
Depict this relationship using an arrow diagram. Write down its domain, co-domain and range.


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

If (x − 1, y + 4) = (1, 2) find the values of x and y


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Select the correct answer from given alternative

If A = {a, b, c} The total no. of distinct relations in A × A is


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}


Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Multiple Choice Question :

Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


Choose the correct alternative:

Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?


Choose the correct alternative:

The number of relations on a set containing 3 elements is


Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×