Advertisements
Advertisements
Question
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
Solution
Given:
A = {1, 2, 3, 5} and B = {4, 6, 9}
R = {(x, y) : x − y is odd}
Since 1 -4 = -3 is odd, we have: 1 - 6 = - 5 is odd
2 - 9 = -7 is odd
3 - 4 = -1 is odd
3 - 6 = -3 is odd
5 - 4 = 1 is odd
5 - 6 = -1 is odd
∴ R = {(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)}
APPEARS IN
RELATED QUESTIONS
The given figure shows a relationship between the sets P and Q. Write this relation
- in set-builder form.
- in roster form.
What is its domain and range?
Find the inverse relation R−1 in each of the cases:
(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.
Let A = (3, 5) and B = (7, 11). Let R = {(a, b) : a ∈ A, b ∈ B, a − b is odd}. Show that R is an empty relation from A into B.
Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.
Determine the domain and range of the relation R defined by
(i) R = [(x, x + 5): x ∈ (0, 1, 2, 3, 4, 5)]
Determine the domain and range of the relation R defined by
(ii) R = {(x, x3) : x is a prime number less than 10}
Let A = (x, y, z) and B = (a, b). Find the total number of relations from A into B.
For the relation R1 defined on R by the rule (a, b) ∈ R1 ⇔ 1 + ab > 0. Prove that: (a, b) ∈ R1 and (b , c) ∈ R1 ⇒ (a, c) ∈ R1 is not true for all a, b, c ∈ R.
If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).
If n(A) = 3, n(B) = 4, then write n(A × A × B).
If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.
Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
If R is a relation on the set A = [1, 2, 3, 4, 5, 6, 7, 8, 9] given by x R y ⇔ y = 3x, then R =
A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?
If the set A has p elements, B has q elements, then the number of elements in A × B is
Let R be a relation from a set A to a set B, then
If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is
Write the relation in the Roster Form. State its domain and range
R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}
Write the relation in the Roster Form. State its domain and range
R6 = {(a, b)/a ∈ N, a < 6 and b = 4}
Select the correct answer from given alternative.
The relation ">" in the set of N (Natural number) is
Select the correct answer from given alternative.
If (x, y) ∈ R × R, then xy = x2 is a relation which is
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R2 = {(1, 5), (2, 4), (3, 6)}
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}
Answer the following:
R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R3 = {(2, –1), (7, 7), (1, 3)}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}
Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R
Multiple Choice Question :
If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is
Discuss the following relation for reflexivity, symmetricity and transitivity:
On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive
Is the following relation a function? Justify your answer
R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`
If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.
Is the given relation a function? Give reasons for your answer.
h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}
Is the given relation a function? Give reasons for your answer.
f = {(x, x) | x is a real number}
Is the given relation a function? Give reasons for your answer.
s = {(n, n2) | n is a positive integer}