English

Answer the following: R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive

Sum

Solution

∴ (1, 2), (2, 3) ∈ R but (1, 3) ∉ R

∴ R is not transitive

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Sets and Relations - Miscellaneous Exercise 5.2 [Page 105]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 5 Sets and Relations
Miscellaneous Exercise 5.2 | Q II. (9) (c) | Page 105

RELATED QUESTIONS

The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


If A = [1, 2, 3], B = [4, 5, 6], which of the following are relations from A to B? Give reasons in support of your answer.

(i) [(1, 6), (3, 4), (5, 2)]
(ii) [(1, 5), (2, 6), (3, 4), (3, 6)]
(iii) [(4, 2), (4, 3), (5, 1)]
(iv) A × B.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Let A = (3, 5) and B = (7, 11). Let R = {(ab) : a ∈ A, b ∈ B, a − b is odd}. Show that R is an empty relation from A into B.


Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


If R = {(xy) : xy ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.


If R is a relation on the set A = [1, 2, 3, 4, 5, 6, 7, 8, 9] given by x R y ⇔ y = 3x, then R =


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

If the set A has p elements, B has q elements, then the number of elements in A × B is


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


If R is a relation on a finite set having n elements, then the number of relations on A is


Write the relation in the Roster Form. State its domain and range

R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`


Write the relation in the Roster Form. State its domain and range

R6 = {(a, b)/a ∈ N, a < 6 and b = 4}


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram


Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let f : A → N be defined by f(n) = the highest prime factor of n ∈ A. Write f as a set of ordered pairs and find the range of f


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Discuss the following relation for reflexivity, symmetricity and transitivity:

The relation R defined on the set of all positive integers by “mRn if m divides n”


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai


Is the following relation a function? Justify your answer

R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`


Given R = {(x, y) : x, y ∈ W, x2 + y2 = 25}. Find the domain and Range of R.


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×