English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Discuss the following relation for reflexivity, symmetricity and transitivity: Let P denote the set of all straight lines in a plane. The relation R defined by “Rmif is perpendicular to m” - Mathematics

Advertisements
Advertisements

Question

Discuss the following relation for reflexivity, symmetricity and transitivity:

Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”

Sum

Solution

Let P denote the set of all straight lines in a plane.

The relation R is defined by l R m if l is perpendicular to m.

R = {(l, m): l is perpendicular to m}

(a) Reflexive:

Let l be any line in the plane P.

Then line l is not perpendicular to itself.

{1, 1) ∉ R

∴ R is not reflexive.

(b) Symmetric:

Let (1, m) ∉ R ⇒ l is perpendicular to m

∴ m is perpendicular to l.

Hence (m, l) ∈ R

∴ R is symmetric.

(c) Transitive:

Let (l, m), (m, n) ∈ R

⇒ l is perpendicular to m.

∴ l is parallel to n. (l, n) ∉ R

Hence R is not transitive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets, Relations and Functions - Exercise 1.2 [Page 18]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 1 Sets, Relations and Functions
Exercise 1.2 | Q 1. (ii) | Page 18

RELATED QUESTIONS

Find the inverse relation R−1 in each of the cases:

(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}


Let A = {ab}. List all relations on A and find their number.

 

If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is


Write the relation in the Roster Form. State its domain and range

R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Select the correct answer from given alternative.

A relation between A and B is


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”


Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


Given R = {(x, y) : x, y ∈ W, x2 + y2 = 25}. Find the domain and Range of R.


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×