मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Discuss the following relation for reflexivity, symmetricity and transitivity: Let P denote the set of all straight lines in a plane. The relation R defined by “Rmif is perpendicular to m” - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the following relation for reflexivity, symmetricity and transitivity:

Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”

बेरीज

उत्तर

Let P denote the set of all straight lines in a plane.

The relation R is defined by l R m if l is perpendicular to m.

R = {(l, m): l is perpendicular to m}

(a) Reflexive:

Let l be any line in the plane P.

Then line l is not perpendicular to itself.

{1, 1) ∉ R

∴ R is not reflexive.

(b) Symmetric:

Let (1, m) ∉ R ⇒ l is perpendicular to m

∴ m is perpendicular to l.

Hence (m, l) ∈ R

∴ R is symmetric.

(c) Transitive:

Let (l, m), (m, n) ∈ R

⇒ l is perpendicular to m.

∴ l is parallel to n. (l, n) ∉ R

Hence R is not transitive.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets, Relations and Functions - Exercise 1.2 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 1 Sets, Relations and Functions
Exercise 1.2 | Q 1. (ii) | पृष्ठ १८

संबंधित प्रश्‍न

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.


A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Let A = (3, 5) and B = (7, 11). Let R = {(ab) : a ∈ A, b ∈ B, a − b is odd}. Show that R is an empty relation from A into B.


Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


If R is a relation on a finite set having n elements, then the number of relations on A is


If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R6 = {(a, b)/a ∈ N, a < 6 and b = 4}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Is the following relation a function? Justify your answer

R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`


Is the given relation a function? Give reasons for your answer.

g = `"n", 1/"n" |"n"` is a positive integer


Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×