Advertisements
Advertisements
प्रश्न
If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y
उत्तर
Since `(x + 1/3, y/3 - 1) = (1/2, 3/2)`
the corresponding elements are equal.
∴ `x + 1/3 = 1/2` and `y/3 - 1 = 3/2`
∴ `x = 1/2 - 1/3` and `y/3 = 3/2 + 1 = 5/2`
∴ x = `1/6` and y = `15/2`.
APPEARS IN
संबंधित प्रश्न
Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.
Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.
- Write R in roster form
- Find the domain of R
- Find the range of R.
Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.
Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.
Determine the domain and range of the relations:
(i) R = {(a, b) : a ∈ N, a < 5, b = 4}
Define a relation R on the set N of natural number by R = {(x, y) : y = x + 5, x is a natural number less than 4, x, y ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(ii) (a, b) R (c, d) ⇒ (c, d) R (a, b) for all (a, b), (c, d) ∈ N × N
If R is a relation defined on the set Z of integers by the rule (x, y) ∈ R ⇔ x2 + y2 = 9, then write domain of R.
If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.
If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.
If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(x, y) : x, y ∈ A × B and x > y}
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
If R is a relation on the set A = [1, 2, 3, 4, 5, 6, 7, 8, 9] given by x R y ⇔ y = 3x, then R =
If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)
Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs
Write the relation in the Roster Form. State its domain and range
R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`
Write the relation in the Roster Form. State its domain and range
R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
Select the correct answer from given alternative.
If (x, y) ∈ R × R, then xy = x2 is a relation which is
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R2 = {(1, 5), (2, 4), (3, 6)}
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}
Answer the following:
Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.
A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is reflexive
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence
Choose the correct alternative:
Let R be the universal relation on a set X with more than one element. Then R is
Choose the correct alternative:
Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is
Is the given relation a function? Give reasons for your answer.
t = {(x, 3) | x is a real number
Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.