मराठी

Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R. - Mathematics

Advertisements
Advertisements

प्रश्न

Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.

बेरीज

उत्तर

R = {(a, b): a, b ∈ Z, a – b is an integer}

If a, b ∈ Z, then a - b ∈ Z

=> Every ordered pair of integers is contained in R.

R ={(a, b) : a, b ∈ Z}

So, Range of R = Domain of R = Z.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise 2.2 [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise 2.2 | Q 9 | पृष्ठ ३६
आरडी शर्मा Mathematics [English] Class 11
पाठ 2 Relations
Exercise 2.3 | Q 20 | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a relation from A to B

Justify your answer in case.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Let A = (3, 5) and B = (7, 11). Let R = {(ab) : a ∈ A, b ∈ B, a − b is odd}. Show that R is an empty relation from A into B.


Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Determine the domain and range of the relations:

(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and}  \left| a \right| \leq 3 \right\}\]

 


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


If n(A) = 3, n(B) = 4, then write n(A × A × B).

 

If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is


A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y


If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R7 = {(a, b)/a, b ∈ N, a + b = 6}


Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R3 = {(2, –1), (7, 7), (1, 3)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Multiple Choice Question :

Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it  is reflexive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×