Advertisements
Advertisements
प्रश्न
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric
उत्तर
Given N = set of natural numbers
R is the relation defined by a R b if 2a + 3b = 30
3b = 30 – 2a ⇒ b = `(30 - 2a)/3` a, b ∈ N
a = 1, b = `(30 - 2)/3 = 28/3 ∉ "N"`
a = 2, b = `(30 - 4)/3 = 26/3 ∉ "N"`
a = 3, b = `(30 - 6)/3 = 24/3` = 8 ∈ N
∴ (3, 8) ∈ R
a = 4, b = `(30 - 8)/3 = 22/3 ∉ "N"`
a = 5, b = `(30 - 10)/3 = 20/3 ∉ "N"`
a = 6, b = `(30 - 12)/3 = 18/3` = 6 ∈ N
∴ (6, 6) ∈ R
a = 7, b = `(30 - 14)/3 = 16/3 ∉ "N"`
a = 8, b = `(30 - 16)/3 = 14/3 ∉ "N"`
a = 9, b = `(30 - 18)/3 = 12/3` = 4 ∈ N
∴ (9, 4) ∈ R
a = 10, b = `(30 - 20)/3 = 10/3 ∉ "N"`
a = 11, b = `(30 - 22)/3 = 8/3 ∉ "N"`
a = 12, b = `(30 - 24)/3 = 6/3` = 2 ∈ N
∴ (12, 2) ∈ R
a = 13, b = `(30 - 26)/3 = 4/3 ∉ "N"`
a = 14, b = `(30 - 28)/3 = 2/3 ∉ "N"`
a = 15, b = `(30 - 30)/3 = 0/3` = 0 ∈ N
When a > 15, b negative and does not belong to N.
∴ R = {(3, 8), (6, 6), (9, 4), (12, 2)}.
R is not symmetric since for (3, 8) ∈ R, (8, 3) ∉ R
APPEARS IN
संबंधित प्रश्न
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Determine the domain and range of the relations:
(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and} \left| a \right| \leq 3 \right\}\]
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(ii) (a, b) R (c, d) ⇒ (c, d) R (a, b) for all (a, b), (c, d) ∈ N × N
Let R = [(x, y) : x, y ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.
If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is
A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?
If R is a relation on a finite set having n elements, then the number of relations on A is
Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation
Write the relation in the Roster Form. State its domain and range
R1 = {(a, a2)/a is prime number less than 15}
Write the relation in the Roster Form. State its domain and range
R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`
Select the correct answer from given alternative.
Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | y = x + 3, x, y are natural numbers < 10}
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Discuss the following relation for reflexivity, symmetricity and transitivity:
On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
Is the following relation a function? Justify your answer
R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`
Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?
f is a function from A to B
Justify your answer in case.