मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric - Mathematics

Advertisements
Advertisements

प्रश्न

On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric

बेरीज

उत्तर

Given N = set of natural numbers

R is the relation defined by a R b if 2a + 3b = 30

3b = 30 – 2a ⇒ b = `(30 - 2a)/3` a, b ∈ N

a = 1, b = `(30 - 2)/3 = 28/3 ∉ "N"`

a = 2, b = `(30 - 4)/3 = 26/3 ∉ "N"`

a = 3, b = `(30 - 6)/3 = 24/3` = 8 ∈ N

∴ (3, 8) ∈ R

a = 4, b = `(30 - 8)/3 = 22/3 ∉ "N"`

a = 5, b = `(30 - 10)/3 = 20/3 ∉ "N"`

a = 6, b = `(30 - 12)/3 = 18/3` = 6 ∈ N

∴ (6, 6) ∈ R

a = 7, b = `(30 - 14)/3 = 16/3 ∉ "N"`

a = 8, b = `(30 - 16)/3 = 14/3 ∉ "N"`

a = 9, b = `(30 - 18)/3 = 12/3` = 4 ∈ N

∴ (9, 4) ∈ R

a = 10, b = `(30 - 20)/3 = 10/3 ∉ "N"`

a = 11, b = `(30 - 22)/3 = 8/3 ∉ "N"`

a = 12, b = `(30 - 24)/3 = 6/3` = 2 ∈ N

∴ (12, 2) ∈ R

a = 13, b = `(30 - 26)/3 = 4/3 ∉ "N"`

a = 14, b = `(30 - 28)/3 = 2/3 ∉ "N"`

a = 15, b = `(30 - 30)/3 = 0/3` = 0 ∈ N

When a > 15, b negative and does not belong to N.

∴ R = {(3, 8), (6, 6), (9, 4), (12, 2)}.

R is not symmetric since for (3, 8) ∈ R, (8, 3) ∉ R

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets, Relations and Functions - Exercise 1.2 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 1 Sets, Relations and Functions
Exercise 1.2 | Q 5. (ii) | पृष्ठ १८

संबंधित प्रश्‍न

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Determine the domain and range of the relations:

(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and}  \left| a \right| \leq 3 \right\}\]

 


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

If R is a relation on a finite set having n elements, then the number of relations on A is


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}


Write the relation in the Roster Form. State its domain and range

R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Multiple Choice Question :

Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.


Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Is the following relation a function? Justify your answer

R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×