मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Discuss the following relation for reflexivity, symmetricity and transitivity: On the set of natural numbers the relation R defined by “xRy if x + 2y = 1” - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”

बेरीज

उत्तर

N = {1, 2, 3, 4, 5, ….}

xRy if x + 2y = 1 R is an empty set

(a) xRx ⇒ x + 2x = 1

⇒ x = 13 ∉ N.

It is not reflexive

xRy = yRx

⇒ x + 2y = 1

It does not imply that y + 2x = 1 as y = 1 − x2

It is not symmetric.

(b) – x = y

⇒ (–1, 1) ∉ N

It is not transitive.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets, Relations and Functions - Exercise 1.2 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 1 Sets, Relations and Functions
Exercise 1.2 | Q 1. (v) | पृष्ठ १८

संबंधित प्रश्‍न

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.


Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.

  1. Write R in roster form
  2. Find the domain of R
  3. Find the range of R.

Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?


If R = [(xy) : xy ∈ W, 2x + y = 8], then write the domain and range of R.


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Identify which of if the following relations are reflexive, symmetric, and transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}      
R = {(a, b) : a, b ∈ N, a + b is even} x
R = {(a, b) : a, b ∈ N, a divides b}      
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}      
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}      
R = {(a, b) : Line a is perpendicular to line b in a plane}      
R = {(a, b) : a, b ∈ R, a < b}      
R = {(a, b) : a, b ∈ R, a ≤ b3}      

Select the correct answer from given alternative

If A = {a, b, c} The total no. of distinct relations in A × A is


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R3 = {(2, –1), (7, 7), (1, 3)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×