मराठी

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form. - Mathematics

Advertisements
Advertisements

प्रश्न

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.

बेरीज

उत्तर १

Given: A = {1, 2, 3, 5} and B = {4, 6, 9}

R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}

= {(x, y) : y - x = odd; x ∈ A, y ∈ B}

∴ R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

shaalaa.com

उत्तर २

A = [1, 2, 3, 5] and B = [4, 6, 9]
R = {(xy) : the difference between x and y is odd, x ∈ A, y ∈ B}
For x = 1,
4 - 1 = 3 and 6-1 = 5
y = 4, 6
For x = 2,
9 -2 = 7
y = 9
For x = 3,
4 -3 = 1 and 6 -3 = 3
y = 4, 6
For x = 5,
5 - 4=1 and 6 -5 =1
y = 4, 6
Thus, we have:
R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise 2.2 [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise 2.2 | Q 3 | पृष्ठ ३६
आरडी शर्मा Mathematics [English] Class 11
पाठ 2 Relations
Exercise 2.3 | Q 16 | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.


The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Determine the domain and range of the relations:

(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and}  \left| a \right| \leq 3 \right\}\]

 


Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 


The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}


Write the relation in the Roster Form. State its domain and range

R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R2 = {(1, 5), (2, 4), (3, 6)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive


Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Choose the correct alternative:

The rule f(x) = x2 is a bijection if the domain and the co-domain are given by


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×