Advertisements
Advertisements
प्रश्न
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence
उत्तर
Given N = set of natural numbers
R is the relation defined by a R b if 2a + 3b = 30
3b = 30 – 2a ⇒ b = `(30 - 2a)/3` a, b ∈ N
a = 1, b = `(30 - 2)/3 = 28/3 ∉ "N"`
a = 2, b = `(30 - 4)/3 = 26/3 ∉ "N"`
a = 3, b = `(30 - 6)/3 = 24/3` = 8 ∈ N
∴ (3, 8) ∈ R
a = 4, b = `(30 - 8)/3 = 22/3 ∉ "N"`
a = 5, b = `(30 - 10)/3 = 20/3 ∉ "N"`
a = 6, b = `(30 - 12)/3 = 18/3` = 6 ∈ N
∴ (6, 6) ∈ R
a = 7, b = `(30 - 14)/3 = 16/3 ∉ "N"`
a = 8, b = `(30 - 16)/3 = 14/3 ∉ "N"`
a = 9, b = `(30 - 18)/3 = 12/3` = 4 ∈ N
∴ (9, 4) ∈ R
a = 10, b = `(30 - 20)/3 = 10/3 ∉ "N"`
a = 11, b = `(30 - 22)/3 = 8/3 ∉ "N"`
a = 12, b = `(30 - 24)/3 = 6/3` = 2 ∈ N
∴ (12, 2) ∈ R
a = 13, b = `(30 - 26)/3 = 4/3 ∉ "N"`
a = 14, b = `(30 - 28)/3 = 2/3 ∉ "N"`
a = 15, b = `(30 - 30)/3 = 0/3` = 0 ∈ N
When a > 15, b negative and does not belong to N.
∴ R = {(3, 8), (6, 6), (9, 4), (12, 2)}.
∴ R is not an equivalence relation.
APPEARS IN
संबंधित प्रश्न
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.
Find the inverse relation R−1 in each of the cases:
(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}
Determine the domain and range of the relations:
(i) R = {(a, b) : a ∈ N, a < 5, b = 4}
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(i) (a, b) R (a, b) for all (a, b) ∈ N × N
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
Let R be a relation from a set A to a set B, then
If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}
Answer the following:
R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric
Answer the following:
Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.
Answer the following:
Show that the following is an equivalence relation
R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}
Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive
Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.
Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.