Advertisements
Advertisements
प्रश्न
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is reflexive
उत्तर
Given N = set of natural numbers
R is the relation defined by a R b if 2a + 3b = 30
3b = 30 – 2a ⇒ b = `(30 - 2a)/3` a, b ∈ N
a = 1, b = `(30 - 2)/3 = 28/3 ∉ "N"`
a = 2, b = `(30 - 4)/3 = 26/3 ∉ "N"`
a = 3, b = `(30 - 6)/3 = 24/3` = 8 ∈ N
∴ (3, 8) ∈ R
a = 4, b = `(30 - 8)/3 = 22/3 ∉ "N"`
a = 5, b = `(30 - 10)/3 = 20/3 ∉ "N"`
a = 6, b = `(30 - 12)/3 = 18/3` = 6 ∈ N
∴ (6, 6) ∈ R
a = 7, b = `(30 - 14)/3 = 16/3 ∉ "N"`
a = 8, b = `(30 - 16)/3 = 14/3 ∉ "N"`
a = 9, b = `(30 - 18)/3 = 12/3` = 4 ∈ N
∴ (9, 4) ∈ R
a = 10, b = `(30 - 20)/3 = 10/3 ∉ "N"`
a = 11, b = `(30 - 22)/3 = 8/3 ∉ "N"`
a = 12, b = `(30 - 24)/3 = 6/3` = 2 ∈ N
∴ (12, 2) ∈ R
a = 13, b = `(30 - 26)/3 = 4/3 ∉ "N"`
a = 14, b = `(30 - 28)/3 = 2/3 ∉ "N"`
a = 15, b = `(30 - 30)/3 = 0/3` = 0 ∈ N
When a > 15, b negative and does not belong to N.
∴ R = {(3, 8), (6, 6), (9, 4), (12, 2)}.
R is not reflexive since (a, a) ∉ R for all a ∈ N.
APPEARS IN
संबंधित प्रश्न
Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Define a relation R on the set N of natural number by R = {(x, y) : y = x + 5, x is a natural number less than 4, x, y ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.
Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(a, b) : a, b ∈ A, b is exactly divisible by a}
(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R.
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
(iii) (a, b) R (c, d) and (c, d) R (e, f) ⇒ (a, b) R (e, f) for all (a, b), (c, d), (e, f) ∈ N × N
If R = [(x, y) : x, y ∈ W, 2x + y = 8], then write the domain and range of R.
A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is
If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is
Select the correct answer from given alternative
If A = {a, b, c} The total no. of distinct relations in A × A is
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}
Answer the following:
R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is reflexive
Answer the following:
Show that the following is an equivalence relation
R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}
Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | x = 2y, x ∈ {2, 3, 4, 5}, y ∈ {1, 2, 3, 4}
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | y = x + 3, x, y are natural numbers < 10}
A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Is the given relation a function? Give reasons for your answer.
s = {(n, n2) | n is a positive integer}