Advertisements
Advertisements
प्रश्न
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | x = 2y, x ∈ {2, 3, 4, 5}, y ∈ {1, 2, 3, 4}
उत्तर
x = {2, 3, 4, 5} y = {1, 2, 3, 4}
x = 2y
2y = x
y = `x/2`
If `x = 2 ⇒ y = x/2 = 2/2 = 1`
if `x = 3 ⇒ y = x/2 = 3/2`
If `x = 4 ⇒ y = x/2 = 4/2 = 2`
If `x = 5 ⇒ y = x/2 = 5/2`
(a) Arrow diagram
(b) Graph
(c) Roster form R = {(2, 1) (4, 2)}
APPEARS IN
संबंधित प्रश्न
Determine the domain and range of the relations:
(i) R = {(a, b) : a ∈ N, a < 5, b = 4}
Let A = (x, y, z) and B = (a, b). Find the total number of relations from A into B.
If R is a relation on a finite set having n elements, then the number of relations on A is
Write the relation in the Roster Form. State its domain and range
R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}
Discuss the following relation for reflexivity, symmetricity and transitivity:
On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive
Choose the correct alternative:
The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?
Choose the correct alternative:
Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?
Is the following relation a function? Justify your answer
R2 = {(x, |x |) | x is a real number}
Is the given relation a function? Give reasons for your answer.
g = `"n", 1/"n" |"n"` is a positive integer