Advertisements
Advertisements
प्रश्न
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”
उत्तर
A = {set of all members of the family}
aRb is a is not a sister of b
(a) aRa ⇒ a is not a sister of a It is reflexive
(b) aRb ⇒ a is not a sister of b.
bRa ⇒ b is not a sister of a.
It is symmetric
(c) aRb ⇒ a is not a sister of b.
bRc ⇒ b is not a sister of c.
aRc ⇒ a can be a sister of c
It is not transitive.
APPEARS IN
संबंधित प्रश्न
The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`
The relation g is defined by g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`
Show that f is a function and g is not a function.
Find the inverse relation R−1 in each of the cases:
(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}
Find the inverse relation R−1 in each of the cases:
(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.
Define a relation R on the set N of natural number by R = {(x, y) : y = x + 5, x is a natural number less than 4, x, y ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.
If n(A) = 3, n(B) = 4, then write n(A × A × B).
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is
R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is
If (x − 1, y + 4) = (1, 2) find the values of x and y
Write the relation in the Roster Form. State its domain and range
R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}
Select the correct answer from given alternative
If A = {a, b, c} The total no. of distinct relations in A × A is
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric
Choose the correct alternative:
Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is
Is the given relation a function? Give reasons for your answer.
h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}
Is the given relation a function? Give reasons for your answer.
g = `"n", 1/"n" |"n"` is a positive integer
Is the given relation a function? Give reasons for your answer.
s = {(n, n2) | n is a positive integer}
If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.