मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from given alternative. If (x, y) ∈ R × R, then xy = x2 is a relation which is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is

पर्याय

  • Symmetric

  • Reflexive

  • Transitive

  • Equivalence

MCQ

उत्तर

If (x, y) ∈ R × R, then xy = x2 is a relation which is Equivalence

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Sets and Relations - Miscellaneous Exercise 5.1 [पृष्ठ १०४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 5 Sets and Relations
Miscellaneous Exercise 5.1 | Q I. (9) | पृष्ठ १०४

संबंधित प्रश्‍न

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.


Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.

  1. Write R in roster form
  2. Find the domain of R
  3. Find the range of R.

Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.


Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.


Find the inverse relation R−1 in each of the cases:

(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Justify your answer in case.


Let A = [1, 2, 3, ......., 14]. Define a relation on a set A by
R = {(xy) : 3x − y = 0, where xy ∈ A}.
Depict this relationship using an arrow diagram. Write down its domain, co-domain and range.


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


If R = [(xy) : xy ∈ W, 2x + y = 8], then write the domain and range of R.


Let R be a relation on N defined by x + 2y = 8. The domain of R is


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)


Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


Choose the correct alternative:

Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Choose the correct alternative:

The rule f(x) = x2 is a bijection if the domain and the co-domain are given by


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×