Advertisements
Advertisements
Question
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R2 = {(–1, 1)}
Solution
A = {1, 2, 3, 7} B = {3, 0, –1, 7}
A × B = {1, 2, 3} × {3, 0, –1, 7}
A × B = {(1, 3) (1, 0) (1, –1) (1, 7) (2, 3) (2, 0) (2, –1) (2, 7) (3, 3) (3, 0) (3, –1) (3, 7) (7, 3) (7, 0) (7, –1) (7, 7)}
R2 = {(–1, 1)}
It is not a relation, there is no element of (–1, 1) in A × B
APPEARS IN
RELATED QUESTIONS
Define a relation R on the set N of natural number by R = {(x, y) : y = x + 5, x is a natural number less than 4, x, y ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.
A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?
R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is
If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)
Answer the following:
Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b)/|a − b| is even} is an equivalence relation.
Multiple Choice Question :
The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.
If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.