English

A Relation ϕ from C to R is Defined By X ϕ Y ⇔ |X| = Y. Which One is Correct? (A) (2 + 3i) ϕ 13 (B) 3ϕ (−3) (C) (1 + I) ϕ 2 (D) I ϕ 1 - Mathematics

Advertisements
Advertisements

Question

A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

Options

  • (a) (2 + 3i) ϕ 13

  • (b) 3ϕ (−3)

  • (c) (1 + i) ϕ 2

  • (d) i ϕ 1

     
MCQ

Solution

(d) i ϕ 1

We have \[\left| i \right| = \sqrt{1^2 + 0^2} = 1\]

Thus, i ϕ 1 satisfies x ϕ y ⇔
|x| = y .
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.5 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.5 | Q 7 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.

  1. Write R in roster form
  2. Find the domain of R
  3. Find the range of R.

If A = [1, 2, 3], B = [4, 5, 6], which of the following are relations from A to B? Give reasons in support of your answer.

(i) [(1, 6), (3, 4), (5, 2)]
(ii) [(1, 5), (2, 6), (3, 4), (3, 6)]
(iii) [(4, 2), (4, 3), (5, 1)]
(iv) A × B.


Find the inverse relation R−1 in each of the cases:

(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}


Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Justify your answer in case.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is


A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is


If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R1 = {(1, 4), (1, 5), (1, 6)}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Multiple Choice Question :

If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


Choose the correct alternative:

The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×