English

Let R Be a Relation on N × N Defined By(A, B) R (C, D) ⇔ A + D = B + C For All (A, B), (C, D) ∈ N × Nshow That:(Ii) (A, B) R (C, D) ⇒ (C, D) R (A, B) for All (A, B), (C, D) ∈ N × N - Mathematics

Advertisements
Advertisements

Question

Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 

Solution

We are given ,
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

\[(a, b) R (c, d) \Rightarrow a + d = b + c \]
\[ \Rightarrow c + b = d + a \]
\[ \Rightarrow (c, d) R (a, b)\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.3 | Q 22.2 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.


Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.


The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?


For the relation R1 defined on R by the rule (ab) ∈ R1 ⇔ 1 + ab > 0. Prove that: (ab) ∈ R1 and (b , c) ∈ R1 ⇒ (ac) ∈ R1 is not true for all abc ∈ R.


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


Let R be a relation from a set A to a set B, then


If (x − 1, y + 4) = (1, 2) find the values of x and y


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Select the correct answer from given alternative

If A = {a, b, c} The total no. of distinct relations in A × A is


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


Answer the following:

Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b)/|a − b| is even} is an equivalence relation.


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | x = 2y, x ∈ {2, 3, 4, 5}, y ∈ {1, 2, 3, 4}


A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric


Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Is the given relation a function? Give reasons for your answer.

g = `"n", 1/"n" |"n"` is a positive integer


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×