English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric - Mathematics

Advertisements
Advertisements

Question

On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric

Sum

Solution

N = the set of natural numbers.

R is the relation defined on N by

a R b if a + b ≤ 6

R = {(a, b), a, b ∈ N / a + b ≤ 6}

a + b ≤ 6 ⇒ b ≤ 6 – a

a = 1,

b ≤ 6 – 1 = 5

b is 1, 2, 3, 4, 5

∴ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) ∈ R

a = 2,

b ≤ 6 – 2 = 4

b is 1, 2, 3, 4

∴ (2, 1), (2, 2), (2, 3), (2, 4) ∈ R

a = 3,

b < 6 – 3 = 3

b is 1, 2, 3

∴ (3, 1), (3, 2), (3, 3) ∈ R

a = 4 ,

b < 6 – 4 = 2

b is 1, 2

∴ (4, 1), (4, 2) ∈ R

a = 5,

b < 6 – 5 = 1

b is 1

∴ (5, 1) ∈ R

∴ R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}

Symmetric:

Cleary R is symmetric forever (x, y) ∈ R, we have (y, x) ∈ R.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets, Relations and Functions - Exercise 1.2 [Page 18]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 1 Sets, Relations and Functions
Exercise 1.2 | Q 7. (ii) | Page 18

RELATED QUESTIONS

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


If R is a relation on the set A = [1, 2, 3, 4, 5, 6, 7, 8, 9] given by x R y ⇔ y = 3x, then R =


A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


If the set A has p elements, B has q elements, then the number of elements in A × B is


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | x = 2y, x ∈ {2, 3, 4, 5}, y ∈ {1, 2, 3, 4}


Multiple Choice Question :

If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is


Discuss the following relation for reflexivity, symmetricity and transitivity:

The relation R defined on the set of all positive integers by “mRn if m divides n”


Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


Choose the correct alternative:

Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?


Choose the correct alternative:

The rule f(x) = x2 is a bijection if the domain and the co-domain are given by


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×