Advertisements
Advertisements
Question
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric
Solution
N = the set of natural numbers.
R is the relation defined on N by
a R b if a + b ≤ 6
R = {(a, b), a, b ∈ N / a + b ≤ 6}
a + b ≤ 6 ⇒ b ≤ 6 – a
a = 1,
b ≤ 6 – 1 = 5
b is 1, 2, 3, 4, 5
∴ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) ∈ R
a = 2,
b ≤ 6 – 2 = 4
b is 1, 2, 3, 4
∴ (2, 1), (2, 2), (2, 3), (2, 4) ∈ R
a = 3,
b < 6 – 3 = 3
b is 1, 2, 3
∴ (3, 1), (3, 2), (3, 3) ∈ R
a = 4 ,
b < 6 – 4 = 2
b is 1, 2
∴ (4, 1), (4, 2) ∈ R
a = 5,
b < 6 – 5 = 1
b is 1
∴ (5, 1) ∈ R
∴ R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}
Symmetric:
Cleary R is symmetric forever (x, y) ∈ R, we have (y, x) ∈ R.
APPEARS IN
RELATED QUESTIONS
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(i) (a, b) R (a, b) for all (a, b) ∈ N × N
If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(x, y) : x, y ∈ A × B and x > y}
If R is a relation on the set A = [1, 2, 3, 4, 5, 6, 7, 8, 9] given by x R y ⇔ y = 3x, then R =
A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is
R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is
If the set A has p elements, B has q elements, then the number of elements in A × B is
If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)
Write the relation in the Roster Form. State its domain and range
R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}
Answer the following:
Determine the domain and range of the following relation.
R = {(a, b)/a ∈ N, a < 5, b = 4}
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | x = 2y, x ∈ {2, 3, 4, 5}, y ∈ {1, 2, 3, 4}
Multiple Choice Question :
If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is
Discuss the following relation for reflexivity, symmetricity and transitivity:
The relation R defined on the set of all positive integers by “mRn if m divides n”
Discuss the following relation for reflexivity, symmetricity and transitivity:
On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric
Choose the correct alternative:
Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?
Choose the correct alternative:
The rule f(x) = x2 is a bijection if the domain and the co-domain are given by
If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.
Is the given relation a function? Give reasons for your answer.
s = {(n, n2) | n is a positive integer}