English

If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1. - Mathematics

Advertisements
Advertisements

Question

If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.

Sum

Solution

R1 = {(x, y) | y = 2x + 7

Where x ∈R and – 5 ≤ x ≤ 5} is a relation

The domain of R1 consists of all the first elements of all the ordered pairs of R1

i.e., x,

It is also given – 5 ≤ x ≤ 5.

Therefore,

Domain of R1 = [–5, 5]

The range of R contains all the second elements of all the ordered pairs of R1

i.e., y

It is also given y = 2x + 7

Now x ∈ [–5,5]

Multiply L.H.S and R.H.S by 2

We get,

2x ∈ [–10, 10]

Adding L.H.S and R.H.S with 7

We get,

2x + 7 ∈ [–3, 17]

Or, y ∈ [–3, 17]

So,

Range of R1 = [–3, 17]

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations and Functions - Exercise [Page 28]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 2 Relations and Functions
Exercise | Q 7 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.


Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Let A = [1, 2, 3, ......., 14]. Define a relation on a set A by
R = {(xy) : 3x − y = 0, where xy ∈ A}.
Depict this relationship using an arrow diagram. Write down its domain, co-domain and range.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


If n(A) = 3, n(B) = 4, then write n(A × A × B).

 

Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is


If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Select the correct answer from given alternative.

The relation ">" in the set of N (Natural number) is


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it  is reflexive


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Choose the correct alternative:

The number of relations on a set containing 3 elements is


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Choose the correct alternative:

Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is


Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×