English

Let a = [1, 2] and B = [3, 4]. Find the Total Number of Relation from a into B. - Mathematics

Advertisements
Advertisements

Question

Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Solution

We have:
A = {1, 2} and B = {3, 4}
Now,

\[n (A \times B) = n(A) \times n(B) = 2 \times 2 = 4\]

There are 2n relations from A to B, where n is the number of elements in their Cartesian product.
∴ Number of relations from A to B is 24 = 16.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.3 | Q 8 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.


The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Define a relation R on the set N of natural number by R = {(xy) : y = x + 5, x is a natural number less than 4, xy ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.


The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?


For the relation R1 defined on R by the rule (ab) ∈ R1 ⇔ 1 + ab > 0. Prove that: (ab) ∈ R1 and (b , c) ∈ R1 ⇒ (ac) ∈ R1 is not true for all abc ∈ R.


If n(A) = 3, n(B) = 4, then write n(A × A × B).

 

Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


If R = [(xy) : xy ∈ W, 2x + y = 8], then write the domain and range of R.


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is


Let R be a relation from a set A to a set B, then


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Select the correct answer from given alternative.

A relation between A and B is


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is reflexive


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let f : A → N be defined by f(n) = the highest prime factor of n ∈ A. Write f as a set of ordered pairs and find the range of f


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


Choose the correct alternative:

The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×