English

Write the relation in the Roster Form. State its domain and range R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6} - Mathematics and Statistics

Advertisements
Advertisements

Question

Write the relation in the Roster Form. State its domain and range

R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}

Sum

Solution

Let R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}

Here y > x + 1, where x = 1, 2 and y = 2, 4, 6

When x = 1, 4 > 1 + 1, 6 > 1 + 1

∴ y = 4, y = 6

When x = 2, 4 > 2 + 1, 6 > 2 + 1

∴ y = 4, y = 6

∴ R4 = {(1, 4), (1, 6), (2, 4), (2, 6)}

Domain of R4 = set of first elements of ordered pairs of R4

= {1, 2}

Range of R4 = set of second elements of ordered pairs of R4

= {4, 6}

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Sets and Relations - Exercise 5.2 [Page 103]

APPEARS IN

RELATED QUESTIONS

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.


Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


Find the inverse relation R−1 in each of the cases:

(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Let A = {ab}. List all relations on A and find their number.

 

Let A = (xyz) and B = (ab). Find the total number of relations from A into B.

 

Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______.


Let R be a relation from a set A to a set B, then


If (x − 1, y + 4) = (1, 2) find the values of x and y


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Select the correct answer from given alternative.

A relation between A and B is


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is equivalence


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×