Advertisements
Advertisements
Question
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}
Solution
A = {1, 2, 3, 7} B = {3, 0, –1, 7}
A × B = {1, 2, 3} × {3, 0, –1, 7}
A × B = {(1, 3) (1, 0) (1, –1) (1, 7) (2, 3) (2, 0) (2, –1) (2, 7) (3, 3) (3, 0) (3, –1) (3, 7) (7, 3) (7, 0) (7, –1) (7, 7)}
R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}
It is not a relation, there is no element of (0, 3) and (0, 7) in A × B
APPEARS IN
RELATED QUESTIONS
Find the inverse relation R−1 in each of the cases:
(ii) R = {(x, y), : x, y ∈ N, x + 2y = 8}
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(i) (a, b) R (a, b) for all (a, b) ∈ N × N
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P
Write the relation in the Roster Form. State its domain and range
R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}
Answer the following:
Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b)/|a − b| is even} is an equivalence relation.
Choose the correct alternative:
Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is
If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.
Is the given relation a function? Give reasons for your answer.
h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}