English

Let a = [1, 2, 3, 4, 5, 6]. Let R Be a Relation on a Defined by {(A, B) : A, B ∈ A, B Is Exactly Divisible By A}(I) Writer R in Roster Form(Ii) Find the Domain of R(Ii) Find the Range of R. - Mathematics

Advertisements
Advertisements

Question

Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 

Solution

A = [1, 2, 3, 4, 5, 6]
R = {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Here,
2 is divisible by 1 and 2.
3 is divisible by 1 and 3.
4 is divisible by 1 and 4.
5 is divisible by 1 and 5.
6 is divisible by 1, 2, 3 and 6.
∴ R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}

(ii) Domain (R) = {1, 2, 3, 4, 5, 6}

(iii) Range (R) = {1, 2, 3, 4, 5, 6}

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.3 | Q 18 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.


The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.


Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.


Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Let A = (xyz) and B = (ab). Find the total number of relations from A into B.

 

Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If n(A) = 3, n(B) = 4, then write n(A × A × B).

 

If R = {(xy) : xy ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

Let R be a relation on N defined by x + 2y = 8. The domain of R is


If the set A has p elements, B has q elements, then the number of elements in A × B is


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs


Write the relation in the Roster Form. State its domain and range

R7 = {(a, b)/a, b ∈ N, a + b = 6}


Identify which of if the following relations are reflexive, symmetric, and transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}      
R = {(a, b) : a, b ∈ N, a + b is even} x
R = {(a, b) : a, b ∈ N, a divides b}      
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}      
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}      
R = {(a, b) : Line a is perpendicular to line b in a plane}      
R = {(a, b) : a, b ∈ R, a < b}      
R = {(a, b) : a, b ∈ R, a ≤ b3}      

Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R1 = {(1, 4), (1, 5), (1, 6)}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive


Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R3 = {(2, –1), (7, 7), (1, 3)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is equivalence


Choose the correct alternative:

Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×