Advertisements
Advertisements
प्रश्न
In trapezium ABCD, AB || DC, E and F are points on non-parallel sides AD and BC respectively, such that EF || AB. Show that = `"AE"/"ED" = "BF"/"FC"`
उत्तर
Given: ABCD is a trapezium AB || DC
E and F are the points on the side of AD and BC
EF || AB
To Prove: `"AE"/"ED" = "BF"/"FC"`
Construction: Join AC intersecting AC at P
Proof:
In ∆ABC, PF || AB ...(Given)
By basic proportionality theorem
`"AP"/"PC" = "BF"/"FC"` ...(1)
In the ∆ACD, PE || CD ...(Given)
By basic Proportionality theorem
`"AP"/"PC" = "AE"/"ED"` ...(2)
From (1) and (2) we get
`"AE"/"ED" = "BF"/"FC"`
APPEARS IN
संबंधित प्रश्न
ABCD is a trapezium in which AB || DC and P, Q are points on AD and BC respectively, such that PQ || DC if PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD
Rhombus PQRB is inscribed in ΔABC such that ∠B is one of its angle. P, Q and R lie on AB, AC and BC respectively. If AB = 12 cm and BC = 6 cm, find the sides PQ, RB of the rhombus.
DE || BC and CD || EE Prove that AD2 = AB × AF
Check whether AD is bisector of ∠A of ∆ABC of the following
AB = 5 cm, AC = 10 cm, BD = 1.5 cm and CD = 3.5 cm
Check whether AD is bisector of ∠A of ∆ABC of the following
AB = 4 cm, AC = 6 cm, BD = 1.6 cm and CD = 2.4 cm.
ABCD is a quadrilateral in which AB = AD, the bisector of ∠BAC and ∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF || BD.
Construct a ∆PQR in which the base PQ = 4.5 cm, ∠R = 35° and the median from R to RG is 6 cm.
Construct a ∆ABC such that AB = 5.5 cm, ∠C = 25° and the altitude from C to AB is 4 cm
Draw a triangle ABC of base BC = 5.6 cm, ∠A = 40° and the bisector of ∠A meets BC at D such that CD = 4 cm
Draw ∆PQR such that PQ = 6.8 cm, vertical angle is 50° and the bisector of the vertical angle meets the base at D where PD = 5.2 cm