Advertisements
Advertisements
प्रश्न
Integrate the following functions with respect to x :
`(1 + cos 4x)/(cos x - tan x)`
उत्तर
`int (1 + cos 4x)/(cos x - tan x) * "d"x = int (1 + cos 2(2x))/(cosx/sinx - sinx/cosx) * "d"x`
= `int (2cos^2 2x)/((sin^2x - cos^2x)/(sinx cos x)) * "d"x`
= `int (2sin x ocs x * cos^2 2x)/(cos^2x - sin^2x) * "d"x`
= `int (2sinx cosx * cos^2 2x)/(cos^2x - sin^2x) * "d"x`
= `int (sin 2x cos^2x)/(cos 2x) * "d"x`
= `int sin 2x cos 2x * "d"x`
= `int 1/2 xx 2 sin 2x cos 2x * "d"x` .......[sin 2A = 2 sin A cos A]
= `1/2 int sin 4x * "d"x`
= `1/2 xx - (cos 4x)/4 + "c"`
= `- 1/8 cos 4x + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^1 "x" . "tan"^-1 "x" "dx"`
Evaluate : `int _0^1 ("x" . ("sin"^-1 "x")^2)/sqrt (1 - "x"^2)` dx
Integrate the following functions with respect to x :
(2x – 5)(3x + 4x)
Integrate the following functions with respect to x :
`(3x + 4) sqrt(3x + 7)`
Integrate the following functions with respect to x :
`(x + 1)/((x + 2)(x + 3))`
Integrate the following with respect to x :
`x/sqrt(1 + x^2)`
Integrate the following with respect to x :
`("e"^x - "e"^-x)/("e"^x + "e"^-x)`
Integrate the following with respect to x :
`(sin sqrt(x))/sqrt(x)`
Integrate the following with respect to x :
`1/(x log x log (log x))`
Integrate the following with respect to x :
`tan x sqrt(sec x)`
Integrate the following with respect to x:
x sin 3x
Integrate the following with respect to x:\
`logx/(1 + log)^2`
Find the integrals of the following:
`1/(9x^2 - 4)`
Find the integrals of the following:
`1/(6x - 7 - x^2)`
Integrate the following with respect to x:
`(2x - 3)/(x^2 + 4x - 12)`
Integrate the following with respect to x:
`(2x + 1)/sqrt(9 + 4x - x^2)`
Choose the correct alternative:
`int x^2 cos x "d"x` is
Choose the correct alternative:
`int ("d"x)/("e"^x - 1)` is
Choose the correct alternative:
`int (x + 2)/sqrt(x^2 - 1) "d"x` is
Choose the correct alternative:
`int sin sqrt(x) "d"x` is