हिंदी

किसी पूर्णांक m के लिए, प्रत्येक सम पूर्णांक निम्नलिखित रूप का होता है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी पूर्णांक m के लिए, प्रत्येक सम पूर्णांक निम्नलिखित रूप का होता है

विकल्प

  • m

  • m + 1

  • 2m

  • 2m + 1 

MCQ
रिक्त स्थान भरें

उत्तर

2m

स्पष्टीकरण: 

सम पूर्णांक वे पूर्णांक होते हैं जो 2 से विभाज्य होते हैं।

अतः हम कह सकते हैं कि प्रत्येक पूर्णांक जो 2 का गुणज है, एक सम पूर्णांक होना चाहिए।

इसलिए, आइए हम यह निष्कर्ष निकालें कि,

एक पूर्णांक 'm' के लिए, प्रत्येक सम पूर्णांक का रूप होना चाहिए

2 × m = 2m।

shaalaa.com
अंकगणित की आधारभूत प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: वास्तविक संख्याएँ - प्रश्नावली 1.1 [पृष्ठ २]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 1 वास्तविक संख्याएँ
प्रश्नावली 1.1 | Q 1. | पृष्ठ २

संबंधित प्रश्न

निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:

140


निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:

7429


पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

26 और 91


पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

336 और 54


व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं। 


किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रारंभिक स्थान पर मिलेंगे?


किसी पूर्णांक q के लिए प्रत्येक विषम पूर्णांक निम्नलिखित रूप का होता है 


संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक 


यदि दो धनात्मक पूर्णांकों a और b को a = x3y2 और b =xy3 के रूप में व्यक्त किया जाए, जहाँ x और y अभाज्य संख्याएँ हैं, तो HCF (a, b) है


स्पष्ट कीजिए कि 3 × 5 × 7 + 7 एक भाज्य संख्या क्यों है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×