Advertisements
Advertisements
प्रश्न
यदि दो धनात्मक पूर्णांकों a और b को a = x3y2 और b =xy3 के रूप में व्यक्त किया जाए, जहाँ x और y अभाज्य संख्याएँ हैं, तो HCF (a, b) है
विकल्प
xy
xy2
x3y3
x2y2
उत्तर
xy2
स्पष्टीकरण:
यह देखते हुए, a = x3y2 = x × x × x × y × y
और b = xy3 = x × y × y × y
∴ a और b का HCF = HCF (x3y2, xy3)
= x × y × y
= xy2 ...[चूँकि, HCF संख्याओं में शामिल प्रत्येक सामान्य अभाज्य गुणनखंड की सबसे छोटी घात का गुणनफल है]
APPEARS IN
संबंधित प्रश्न
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
5005
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
12, 15 और 21
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
17, 23 और 29
HCF (306, 657) = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।
व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं।
किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रारंभिक स्थान पर मिलेंगे?
किसी पूर्णांक m के लिए, प्रत्येक सम पूर्णांक निम्नलिखित रूप का होता है
यदि 65 और 117 के HCF को 65m – 117 के रूप में व्यक्त किया जा सके तो m का मान है
यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है
1 से 10 तक की संख्याओं (दोनों सम्मिलित हैं) में से सभी संख्याओं से विभाज्य न्यूनतम संख्या है