हिंदी

यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है

विकल्प

  • ab

  • a2b

  • a3b

  • a3b

MCQ
रिक्त स्थान भरें

उत्तर

a3b

स्पष्टीकरण:

दिया गया है, p = ab2 = a × b × b

और q = a3b = a × a × a × b

p और q का LCM = LCM (ab2, a3b)

= a × b × b × a × a

= a3b2   ...[चूँकि, LCM संख्याओं में शामिल प्रत्येक अभाज्य कारक की सबसे बड़ी शक्ति का उत्पाद है]

shaalaa.com
अंकगणित की आधारभूत प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: वास्तविक संख्याएँ - प्रश्नावली 1.1 [पृष्ठ ३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 1 वास्तविक संख्याएँ
प्रश्नावली 1.1 | Q 7. | पृष्ठ ३

संबंधित प्रश्न

निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:

140


निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:

156


निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:

3825


निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:

5005


पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

26 और 91


HCF (306, 657)  = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।


यदि 65 और 117 के HCF को 65m – 117 के रूप में व्यक्त किया जा सके तो m का मान है


वह सबसे बड़ी संख्या, जिससे 70 और 125 को विभाजित करने पर क्रमशः शेषफल 5 और 8 प्राप्त हों, है


क्या किन्हीं दो संख्याओं का HCF 18 और LCM 380 हो सकता है? कारण दीजिए।


दर्शाइए कि किसी प्राकृत संख्या n के लिए संख्या 12n अंक 0 या 5 पर समाप्त नहीं होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×