English

यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है

Options

  • ab

  • a2b

  • a3b

  • a3b

MCQ
Fill in the Blanks

Solution

a3b

स्पष्टीकरण:

दिया गया है, p = ab2 = a × b × b

और q = a3b = a × a × a × b

p और q का LCM = LCM (ab2, a3b)

= a × b × b × a × a

= a3b2   ...[चूँकि, LCM संख्याओं में शामिल प्रत्येक अभाज्य कारक की सबसे बड़ी शक्ति का उत्पाद है]

shaalaa.com
अंकगणित की आधारभूत प्रमेय
  Is there an error in this question or solution?
Chapter 1: वास्तविक संख्याएँ - प्रश्नावली 1.1 [Page 3]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 1 वास्तविक संख्याएँ
प्रश्नावली 1.1 | Q 7. | Page 3

RELATED QUESTIONS

पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

26 और 91


पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

510 और 92


पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

336 और 54


व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं। 


किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रारंभिक स्थान पर मिलेंगे?


किसी पूर्णांक q के लिए प्रत्येक विषम पूर्णांक निम्नलिखित रूप का होता है 


संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक 


यदि 65 और 117 के HCF को 65m – 117 के रूप में व्यक्त किया जा सके तो m का मान है


1 से 10 तक की संख्याओं (दोनों सम्मिलित हैं) में से सभी संख्याओं से विभाज्य न्यूनतम संख्या है


दर्शाइए कि किसी प्राकृत संख्या n के लिए संख्या 12n अंक 0 या 5 पर समाप्त नहीं होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×