Advertisements
Advertisements
Question
व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं।
Solution
संख्याएँ दो प्रकार की होती हैं - अभाज्य और मिश्रित। अभाज्य संख्याओं को 1 और केवल स्वयं से विभाजित किया जा सकता है, जबकि मिश्रित संख्याओं में 1 और स्वयं के अलावा अन्य कारक होते हैं।
यह देखा जा सकता है कि,
7 × 11 × 13 + 13
= 13 (7 × 11 + 1)
= 13 × (77 + 1)
= 13 × 78
= 3 × 13 × 6
दिए गए व्यंजक के कारक 6 और 13 हैं। इसलिए, यह एक मिश्रित संख्या है।
7 × 6 × 5 × 4 × 3 × 2 × 1 + 5
= 5 × (7 × 6 × 4 × 3 × 2 × 1 + 1)
= 5 × (1008 + 1)
= 5 × 1009
1009 को और अधिक गुणनखंडित नहीं किया जा सकता। इसलिए, दिए गए व्यंजक के गुणनखंड 5 और 1009 हैं। इसलिए, यह एक भाज्य संख्या है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
156
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
3825
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
7429
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
26 और 91
किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रारंभिक स्थान पर मिलेंगे?
संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक
वह सबसे बड़ी संख्या, जिससे 70 और 125 को विभाजित करने पर क्रमशः शेषफल 5 और 8 प्राप्त हों, है
यदि दो धनात्मक पूर्णांकों a और b को a = x3y2 और b =xy3 के रूप में व्यक्त किया जाए, जहाँ x और y अभाज्य संख्याएँ हैं, तो HCF (a, b) है
यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है
क्या किन्हीं दो संख्याओं का HCF 18 और LCM 380 हो सकता है? कारण दीजिए।