Advertisements
Advertisements
Question
यदि दो धनात्मक पूर्णांकों a और b को a = x3y2 और b =xy3 के रूप में व्यक्त किया जाए, जहाँ x और y अभाज्य संख्याएँ हैं, तो HCF (a, b) है
Options
xy
xy2
x3y3
x2y2
Solution
xy2
स्पष्टीकरण:
यह देखते हुए, a = x3y2 = x × x × x × y × y
और b = xy3 = x × y × y × y
∴ a और b का HCF = HCF (x3y2, xy3)
= x × y × y
= xy2 ...[चूँकि, HCF संख्याओं में शामिल प्रत्येक सामान्य अभाज्य गुणनखंड की सबसे छोटी घात का गुणनफल है]
APPEARS IN
RELATED QUESTIONS
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
156
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
26 और 91
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
510 और 92
HCF (306, 657) = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।
व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं।
किसी पूर्णांक m के लिए, प्रत्येक सम पूर्णांक निम्नलिखित रूप का होता है
संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक
स्पष्ट कीजिए कि 3 × 5 × 7 + 7 एक भाज्य संख्या क्यों है।
क्या किन्हीं दो संख्याओं का HCF 18 और LCM 380 हो सकता है? कारण दीजिए।
एक प्रातःकालीन सैर के समय, तीन व्यक्ति एक साथ किसी स्थान से चलना प्रारंभ करते है तथा उनके कदमों के माप क्रमशः 40 cm, 42 cm और 45 cm हैं। इनमें से प्रत्येक कितनी न्यूनतम दूरी चले कि वह इस दूरी को पूर्ण कदमो में तय करे?