Advertisements
Advertisements
Question
दर्शाइए कि किसी प्राकृत संख्या n के लिए संख्या 12n अंक 0 या 5 पर समाप्त नहीं होगी।
Solution
यदि कोई भी संख्या अंक 0 या 5 के साथ समाप्त होती है, तो यह हमेशा 5 से विभाज्य है।
यदि 12n अंक शून्य या पांच के साथ समाप्त होता है, तो यह 5 से विभाज्य होना चाहिए।
यह केवल तभी संभव है जब 12n के प्राइम फैक्टर में प्राइम नंबर 5 हो।
अब, 12 = 2 × 2 × 3 = 22 × 3
12n = (22 × 3)n = 22n × 3n
चूंकि, 5 युक्त कोई शब्द नहीं है।
इसलिए, n ∈ N का कोई मान नहीं है जिसके लिए 12n अंक शून्य या पांच के साथ समाप्त होता है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
3825
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
7429
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
26 और 91
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
510 और 92
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
336 और 54
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
12, 15 और 21
HCF (306, 657) = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।
व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं।
किसी पूर्णांक m के लिए, प्रत्येक सम पूर्णांक निम्नलिखित रूप का होता है
1 से 10 तक की संख्याओं (दोनों सम्मिलित हैं) में से सभी संख्याओं से विभाज्य न्यूनतम संख्या है