मराठी

दर्शाइए कि किसी प्राकृत संख्या n के लिए संख्या 12n अंक 0 या 5 पर समाप्त नहीं होगी। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि किसी प्राकृत संख्या n के लिए संख्या 12n अंक 0 या 5 पर समाप्त नहीं होगी।

बेरीज

उत्तर

यदि कोई भी संख्या अंक 0 या 5 के साथ समाप्त होती है, तो यह हमेशा 5 से विभाज्य है।

यदि 12n अंक शून्य या पांच के साथ समाप्त होता है, तो यह 5 से विभाज्य होना चाहिए।

यह केवल तभी संभव है जब 12n के प्राइम फैक्टर में प्राइम नंबर 5 हो।

अब, 12 = 2 × 2 × 3 = 22 × 3

12n = (22 × 3)n = 22n × 3n

चूंकि, 5 युक्त कोई शब्द नहीं है।

इसलिए, n ∈ N का कोई मान नहीं है जिसके लिए 12n अंक शून्य या पांच के साथ समाप्त होता है।

shaalaa.com
अंकगणित की आधारभूत प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [पृष्ठ ७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 11. | पृष्ठ ७

संबंधित प्रश्‍न

पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।

26 और 91


अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:

8, 9 और 25 


HCF (306, 657)  = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।


व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं। 


किसी पूर्णांक m के लिए, प्रत्येक सम पूर्णांक निम्नलिखित रूप का होता है


किसी पूर्णांक q के लिए प्रत्येक विषम पूर्णांक निम्नलिखित रूप का होता है 


संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक 


यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है


1 से 10 तक की संख्याओं (दोनों सम्मिलित हैं) में से सभी संख्याओं से विभाज्य न्यूनतम संख्या है


क्या किन्हीं दो संख्याओं का HCF 18 और LCM 380 हो सकता है? कारण दीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×