Advertisements
Advertisements
प्रश्न
क्या लंबाई a cm और चौड़ाई b cm (a > b) वाले एक आयत के अंदर खींचे जा सकने वाले सबसे बड़े वृत्त का क्षेत्रफल πb2 cm2 है? क्यों?
उत्तर
एक आयत के भीतर खींचा जा सकने वाला सबसे बड़ा वृत्त तब संभव है जब आयत एक वर्ग बन जाए।
∴ वृत्त का व्यास = आयत की चौड़ाई = b
∴ वृत्त की त्रिज्या = `"b"/2`
अतः वृत्त का क्षेत्रफल = πr2 = `π("b"/2)^2`
APPEARS IN
संबंधित प्रश्न
किसी कार के प्रत्येक पहिए का व्यास 80 सेमी है। यदि यह कार 66 किमी प्रति घंटे की चाल से चल रही है, तो 10 मिनट में प्रत्येक पहिया कितने चक्कर लगाती है?
[इस्तेमाल करें Π = 22/7]
निम्नलिखित में से सही उत्तर पर निशान लगाएँ और अपनी पसंद का औचित्य सिद्ध करें: यदि एक वृत्त का परिमाप और क्षेत्रफल संख्यात्मक रूप से बराबर है, तो उस वृत्त की त्रिज्या है:
किसी कार के दो वाइपर हैं, परस्पर कभी आच्छादित नहीं होते हैं। प्रत्येक वाइपर की पत्ती की लंबाई 25 सेमी है और 115° के कोण तक घूम कर सफाई कर सकता है। पत्तियों की प्रत्येक बुहार के साथ जितना क्षेत्रफल साफ हो जाता है, वह ज्ञात कीजिए।
[उपयोग `pi = 22/7`]
जहाजों को समुद्र में जलस्तर के नीचे स्थित चट्टानों की चेतावनी देने के लिए, एक लाइट हाउस 80 डिग्री कोण वाले एक त्रिज्यखंड में 16.5 किमी की दूरी तक लाल रंग का प्रकाश फैलाता है। समुद्र के उस भाग का क्षेत्रफल ज्ञात कीजिए जिसमें जहाज को चेतावनी दी जा सके। [उपयोग π = 3.14]
त्रिज्या R वाले वृत्त के उस त्रिज्यखंड का क्षेत्रफल जिसका कोण p° है, निम्नलिखित है ______.
त्रिज्या के एक अर्धवृत्त के अंतर्गत खींचे जा सकने वाले सबसे बड़े त्रिभुज का क्षेत्रफल ______ है।
यदि एक वृत्त का परिमाप एक वर्ग के परिमाप के बराबर है, तो उनके क्षेत्रफलों का अनुपात ______ है।
त्रिज्याओं 24 cm और 7 cm वाले दो वृत्तों के क्षेत्रफलों के योग के बराबर क्षेत्रफल वाले एक वृत्त का व्यास ______ है।
क्या यह कहना सत्य है कि व्यास p cm वाले एक वृत्त के अंतर्गत वर्ग का क्षेत्रफल p2 cm2 है? क्यों?
आकृति में, छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जहाँ A, B, C और D को केंद्र मान कर खींचे गये चाप युगम में वर्ग ABCD की क्रमशः AB, BC, CD और DA भुजाओं के मध्य-बिद्ओं P, Q, R और S पर प्रतिच्छेद करते हैं (π = 3.14 का प्रयोग कीजिए)।