Advertisements
Advertisements
प्रश्न
क्या लंबाई a cm और चौड़ाई b cm (a > b) वाले एक आयत के अंदर खींचे जा सकने वाले सबसे बड़े वृत्त का क्षेत्रफल πb2 cm2 है? क्यों?
उत्तर
एक आयत के भीतर खींचा जा सकने वाला सबसे बड़ा वृत्त तब संभव है जब आयत एक वर्ग बन जाए।
∴ वृत्त का व्यास = आयत की चौड़ाई = b
∴ वृत्त की त्रिज्या = `"b"/2`
अतः वृत्त का क्षेत्रफल = πr2 = `π("b"/2)^2`
APPEARS IN
संबंधित प्रश्न
किसी कार के दो वाइपर हैं, परस्पर कभी आच्छादित नहीं होते हैं। प्रत्येक वाइपर की पत्ती की लंबाई 25 सेमी है और 115° के कोण तक घूम कर सफाई कर सकता है। पत्तियों की प्रत्येक बुहार के साथ जितना क्षेत्रफल साफ हो जाता है, वह ज्ञात कीजिए।
[उपयोग `pi = 22/7`]
एक गोल मेजपोश पर छ: समान डिजाइन बने हुए हैं जैसा की दी गई आकृति में दर्शाया गया है। यदि मेजपोश की त्रिज्या 28 सेमी है, तो 0.35 रु प्रति वर्ग सेंटीमीटर की दर से इन डिजाइनों को बनाने की लागत ज्ञात कीजिए।
[`sqrt3 = 1.7` का प्रयोग करें]
त्रिज्या के एक अर्धवृत्त के अंतर्गत खींचे जा सकने वाले सबसे बड़े त्रिभुज का क्षेत्रफल ______ है।
यदि एक वृत्त का परिमाप एक वर्ग के परिमाप के बराबर है, तो उनके क्षेत्रफलों का अनुपात ______ है।
किसी स्थान पर 16 m और 12 m व्यास वाले दो वृत्ताकार पाकों के क्षेत्रफलों के योग के बराबर क्षेत्रफल का एक अकेला वृत्ताकार पार्क बनाने का प्रस्ताव है। नये पार्क की त्रिज्या होगी ______ ।
भुजा 6 cm वाले एक वर्ग के अंतर्गत खीचे जा सकने वाले वृत्त का क्षेत्रफल ______ है।
त्रिज्याओं 24 cm और 7 cm वाले दो वृत्तों के क्षेत्रफलों के योग के बराबर क्षेत्रफल वाले एक वृत्त का व्यास ______ है।
क्या भुजा a cm वाले वर्ग के अंतर्गत खींचे गये वृत्त का क्षेत्रफल πa2 cm2 होता है? अपने उत्तर के लिए कारण दीजिए।
क्या यह कहना सत्य होगा कि त्रिज्या a cm वाले एक वृत्त के परिगत वर्ग का परिमाप 8 cm है? अपने उत्तर का कारण दीजिए।
आकृति में, छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जहाँ A, B, C और D को केंद्र मान कर खींचे गये चाप युगम में वर्ग ABCD की क्रमशः AB, BC, CD और DA भुजाओं के मध्य-बिद्ओं P, Q, R और S पर प्रतिच्छेद करते हैं (π = 3.14 का प्रयोग कीजिए)।