Advertisements
Advertisements
प्रश्न
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (AB)T = BTAT
उत्तर
We have,
A = `[(1, 2),(-1, 3)]`
B = `[(4, 0),(1, 5)]`
C = `[(2, 0),(1, -2)]`
And a = 4, b = –2
AB = `[(1, 2),(-1, 3)] [(4, 0),(1, 5)]`
= `[(4 + 2, 0 + 10),(-4 + 3, 0 + 15)]`
= `[(6, 10),(-1, 15)]`
∴ (AB)T = `[(6, -1),(10, 15)]`
Now, BTAT = `[(4, 1),(0, 5)] [(1, -1),(2, 3)]`
= `[(4 + 2, -4 + 3),(0 + 10, 0 + 15)]`
= `[(6, -1),(10, 15)]`
= (AB)T
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the transpose of the following matrices:
`[(5),(1/2),(-1)]`
Find the transpose of the following matrices:
`[(1,-1),(2,3)]`
Find the transpose of the following matrices:
`[(-1,5,6),(sqrt3, 5, 6),(2,3,-1)]`
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (AT)T = A
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (bA)T = bAT
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)T = AT – BT
If A `= ["a"_("ij")]_(4 xx 3)` where `"a"_("ij") - ("i - j")/("i + j"),` then find A.