हिंदी

Let A(-a, O), B(O, A) and C( "', I3 ) Be the Vertices of the L1 Abc and G Be Its Centroid . Prove that - Mathematics

Advertisements
Advertisements

प्रश्न

Let A(-a, 0), B(0, a) and C(α , β) be the vertices of the L1 ABC and G be its centroid . Prove that 

GA2 + GB2 + GC2 = `1/3` (AB2 + BC2 + CA2)

योग

उत्तर

Coordinates of G are ,

G (x , y) = G `((-"a" + 0 + "a")/3 , (0 + "a" + "b")/3)` = G `(0 , ("a + b")/3)`

GA2 = (0 + a)2 + `(("a + b")/3 - 0)^2`

GA2 = `(9"a"^2 + "a"^2 + "b"^2 + 2"ab")/9 = (10"a"^2 + "b"^2 + 2"ab")/9`

GB2 = (0 - 0)2 + `(("a + b")/3 - "a")^2`

GB2 = `(("b" - 2"a")/3)^2 = ("b"^2 + 4"a"^2 - 4"ab")/9`

GC2 = (0 - a)2 + `(("a + b")/3 - "b")^2`

GC2 = a2 + `(("a - 2b")/3)^2 = (9"a"^2 + "a"^2 + 4"b"^2 - 4"ab")/9` 

GA2 + GB2 + GC2 = `(10"a"^2 + "b"^2 + 2"ab" + "b"^2 + 4"a"^2 - 4"ab" + 10"a"^2 + 4"b"^2 - 4"ab")/9 `

= `(24"a"^2 + 6 "b"^2 - 6"ab")/9`

GA2 + GB2 + GC2 = `1/3` (8a2 + 2b2 - 2ab)    .....(1)

AB2 = (- a - 0)2 + (0 - a)2 = 2a2

BC2 = (0 - a)2 + (a - b)2 = a2 + a2 + b2 - 2ab = 2a2 + b2 - 2ab

AC2 = (- a - a)2 + (0 - b)2 = 4a2 + b2

from (1) and (2)

GA2 + GB2 + GC2 = `1/3` (AB2 + BC2 + CA2)

shaalaa.com
The Mid-point of a Line Segment (Mid-point Formula)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Distance and Section Formulae - Exercise 12.3

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 12 Distance and Section Formulae
Exercise 12.3 | Q 21
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×