हिंदी

Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.

योग

उत्तर

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A × B.

We know that A = Set of first elements of the ordered pair elements of A × B

B = Set of second elements of the ordered pair elements of A × B.

∴ x, y, and z are the elements of A; and 1 and 2 are the elements of B.

Since n(A) = 3 and n(B) = 2, it is clear that A = {x, y, z} and B = {1, 2}.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations and Functions - Exercise 2.1 [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 2 Relations and Functions
Exercise 2.1 | Q 9 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.


If A = {–1, 1}, find A × A × A.


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that   A × C is a subset of B × D


Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


If A = {1, 2, 3} and B = {2, 4}, what are A × BB × AA × AB × B and (A × B) ∩ (B × A)?


Let A = {1, 2, 3, 4} and R = {(ab) : a ∈ Ab ∈ Aa divides b}. Write R explicitly. 


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {1, 2}, from the set A × A × A.


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(i) A × (B ∩ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(ii) (A × B) ∩ (A × C)


If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.

 

Find the domain of the real valued function of real variable: 

(ii)  \[f\left( x \right) = \frac{1}{x - 7}\]

 


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]

 

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(iv) \[f\left( x \right) = \sqrt{x - 3}\]

 


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find the domain and range of the real valued function:

(vii)  \[f\left( x \right) = - \left| x \right|\]

 


Find the domain and range of the real valued function:

(ix)  \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)


State True or False for the following statement.

If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}


State True or False for the following statement.

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×