हिंदी

If A = {–1, 1}, find A × A × A. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = {–1, 1}, find A × A × A.

योग

उत्तर

It is known that for any non-empty set A, A × A × A is defined as

A × A × A = {(a, b, c): a, b, c ∈ A}

It is given that A = {–1, 1}

∴ A × A = {- 1, 1} × {- 1, 1}

= {(- 1, – 1), (- 1, 1), (1, – 1), (1, 1)}

A × A × A = {- 1, 1} × {(-1, – 1), (- 1, 1), (1, – 1), (1, 1)}

= {(-1, – 1, – 1), (-1, – 1, 1), (- 1, 1, – 1), (-1, 1, 1), (1, – 1, – 1), (1, – 1, 1), (1, 1, -1), (1, 1, 1)}.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations and Functions - Exercise 2.1 [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 2 Relations and Functions
Exercise 2.1 | Q 5 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).


If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)


Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.


Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


If A = {−1, 1}, find A × A × A.


Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).

 

If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).

 

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(ii) (A × B) ∩ (A × C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iii) A × (B ∪ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iv) (A × B) ∪ (A × C)

 

 


Find the domain of the real valued function of real variable: 

(i)  \[f\left( x \right) = \frac{1}{x}\]

 


Find the domain of the real valued function of real variable: 

(iv)  \[f\left( x \right) = \frac{2x + 1}{x^2 - 9}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain of the real valued function of real variable:

(iv)  \[f\left( x \right) = \frac{\sqrt{x - 2}}{3 - x}\]

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1


If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\]  and g(x)

\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).

 
 
 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)


State True or False for the following statement.

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×