Advertisements
Advertisements
प्रश्न
Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.
उत्तर
A = {1, 2} and B = {3, 4}
A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}
⇒ n(A × B) = 4
We know that if C is a set with n(C) = m, then n[P(C)] = 2m.
A × B number of bats = 24 = 16
Element of subset A x B = H, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), {3),
(1, 4)}, {(1, 3), (2, 3)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}, { (1,4), (2,4)}, {(2, 3),
(2, 4)}, {(1, 3), (1, 4), (2, 3), {(1, 3), (1, 4), (2, 4)}, {(1) , 3), (2, 3), (2, 4)}, {(1,4), (2, 3), (2, 4)}, {(1, 3), (1, 4),, (2, 3), (2,4)}
APPEARS IN
संबंधित प्रश्न
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).
If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.
If A = {1, 2} and B = {1, 3}, find A × B and B × A.
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).
If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(i) A × (B ∪ C) = (A × B) ∪ (A × C)
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(ii) A × (B ∩ C) = (A × B) ∩ (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iii) A × (B ∪ C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iv) (A × B) ∪ (A × C)
Prove that:
(i) (A ∪ B) × C = (A × C) ∪ (B × C)
(ii) (A ∩ B) × C = (A × C) ∩ (B×C)
If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.
Find the domain of the real valued function of real variable:
(v) \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]
Find the domain and range of the real valued function:
(iii) \[f\left( x \right) = \sqrt{x - 1}\]
Find the domain and range of the real valued function:
(iv) \[f\left( x \right) = \sqrt{x - 3}\]
Find the domain and range of the real valued function:
(vi) \[f\left( x \right) = \left| x - 1 \right|\]
Find f + g, f − g, cf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{ and } \frac{f}{g}\] in :
(b) If \[f\left( x \right) = \sqrt{x - 1}\] and \[g\left( x \right) = \sqrt{x + 1}\]
Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.
If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\] and g(x)
\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A
If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.