Advertisements
Advertisements
प्रश्न
Prove that:
(i) (A ∪ B) × C = (A × C) ∪ (B × C)
(ii) (A ∩ B) × C = (A × C) ∩ (B×C)
उत्तर
(i) (A ∪ B) × C = (A × C) ∪ (B × C)
Let (a, b) be an arbitrary element of (A ∪ B) × C.
Thus, we have: \[(a, b) \in (A \cup B) \times C \]
\[ \Rightarrow a \in (A \cup B) \text{ and } b \in C \]
\[ \Rightarrow (a \in \text{ A or }a \in B) \text{ and } b \in C\]
\[ \Rightarrow (a \in A \text{ and } b \in C ) \text{ or } (a \in B \text{ and } b \in C )\]
\[ \Rightarrow (a, b) \in (A \times C )\text{ or } (a, b) \in (B \times C)\]
\[ \Rightarrow (a, b) \in (A \times C) \cup (B \times C )\]
\[ \therefore (A \cup B) \times C \subseteq (A \times C) \cup (B \times C) . . . (i)\]
Again, let (x, y) be an arbitrary element of (A × C ) ∪ (B × C).
Thus, we have:
\[(x, y) \in (A \times C) \cup (B \times C)\]
\[ \Rightarrow (x, y) \text{ in } (A \times C) \text{ or } (x, y) \in (B \times C) \]
\[ \Rightarrow (x \in A y \in C) \text{ or } (x \in B y \in C)\]
\[ \Rightarrow (x \in A \text{ or } x \in B) \text{ or } y \in C\]
\[ \Rightarrow (x \in A \cup B) y \in C\]
\[ \Rightarrow (x, y) \in (A \cup B) \times C\]
\[ \therefore (A \times C) \cup (B \times C) \subseteq (A \cup B) \times C . . . (ii)\]
From (i) and (ii), we get:
(A ∪ B) × C = (A × C) ∪ (B × C)
(ii) (A ∩ B) × C = (A × C) ∩ (B×C)
Let (a, b) be an arbitrary element of (A ∩ B) × C.
Thus, we have:
\[ (a, b) \in (A \cap B) \times C\]
\[ \Rightarrow a \in (A \cap B) b \in C\]
\[ \Rightarrow (a \in A a \in B) b \in C\]
\[ \Rightarrow (a \in A b \in C) (a \in B b \in C)\]
\[ \Rightarrow (a, b) \in (A \times C) (a, b) \in (B \times C) \]
\[ \Rightarrow (a, b) \in (A \times C) \cap (B \times C) \]
\[ \therefore (A \cap B) \times C \subseteq (A \times C) \cap (B \times C) . . . \left( iii \right)\]
Again, let (x, y) be an arbitrary element of (A × C) ∩ (B × C).
Thus, we have:
\[(x, y) \in (A \times C) \cap (B \times C)\]
\[ \Rightarrow (x, y) \in (A \times C) (x, y) \in (B \times C)\]
\[ \Rightarrow (x \in A y \in C) (x \in B y \in C)\]
\[ \Rightarrow (x \in A x \in B) y \in C\]
\[ \Rightarrow x \in (A \cap B) y \in C\]
\[ \Rightarrow (x, y) \in (A \cap B) \times C\]
\[ \therefore (A \times C) \cap (B \times C) \subseteq (A \cap B) \times C . . . \left( iv \right)\]
From (iii) and (iv), we get:
(A ∩ B) × C = (A × C) ∩ (B × C)
APPEARS IN
संबंधित प्रश्न
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.
If A = {–1, 1}, find A × A × A.
If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × C is a subset of B × D
The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.
If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(i) A × (B ∪ C) = (A × B) ∪ (A × C)
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:
(i) A × C ⊂ B × D
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(i) A × (B ∩ C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(ii) (A × B) ∩ (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iv) (A × B) ∪ (A × C)
If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.
Find the domain of the real valued function of real variable:
(i) \[f\left( x \right) = \frac{1}{x}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{x - 7}\]
Find the domain of the real valued function of real variable:
(v) \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]
Find the domain of the real valued function of real variable:
(i) \[f\left( x \right) = \sqrt{x - 2}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]
Find the domain and range of the real valued function:
(iv) \[f\left( x \right) = \sqrt{x - 3}\]
Find the domain and range of the real valued function:
(vii) \[f\left( x \right) = - \left| x \right|\]
Find f + g, f − g, cf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{ and } \frac{f}{g}\] in :
(a) If f(x) = x3 + 1 and g(x) = x + 1
Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.
If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\] and g(x)
\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?
If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.
A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)
If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)
State True or False for the following statement.
If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}