English

Prove That: (I) (A ∪ B) × C = (A × C) ∪ (B × C) (Ii) (A ∩ B) × C = (A × C) ∩ (B×C) - Mathematics

Advertisements
Advertisements

Question

Prove that:

(i)  (A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B×C)

 

Solution

(i) (A ∪ B) × C = (A × C) ∪ (B × C)
Let (a, b) be an arbitrary element of (A ∪ B) × C.
Thus, we have: \[(a, b) \in (A \cup B) \times C \]
\[ \Rightarrow a \in (A \cup B) \text{ and } b \in C \]
\[ \Rightarrow (a \in \text{ A or }a \in B) \text{ and } b \in C\]
\[ \Rightarrow (a \in A \text{ and }  b \in C ) \text{ or } (a \in B \text{ and } b \in C )\]
\[ \Rightarrow (a, b) \in (A \times C )\text{  or }  (a, b) \in (B \times C)\]
\[ \Rightarrow (a, b) \in (A \times C) \cup (B \times C )\]
\[ \therefore (A \cup B) \times C \subseteq (A \times C) \cup (B \times C)      . . . (i)\]

Again, let (x, y) be an arbitrary element of (A × C ) ∪ (B × C).
Thus, we have:

\[(x, y) \in (A \times C) \cup (B \times C)\]
\[ \Rightarrow (x, y) \text{ in }  (A \times C) \text{ or } (x, y) \in (B \times C) \]
\[ \Rightarrow (x \in A  y \in C) \text{ or } (x \in B  y \in C)\]
\[ \Rightarrow (x \in A \text{ or } x \in B) \text{ or } y \in C\]
\[ \Rightarrow (x \in A \cup B)   y \in C\]
\[ \Rightarrow (x, y) \in (A \cup B) \times C\]
\[ \therefore (A \times C) \cup (B \times C) \subseteq (A \cup B) \times C . . . (ii)\]

From (i) and (ii), we get:
(A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B×C)
Let (a, b) be an arbitrary element of (A ∩ B) × C.
Thus, we have:

\[ (a, b) \in (A \cap B) \times C\]
\[ \Rightarrow a \in (A \cap B)  b \in C\]
\[ \Rightarrow (a \in A  a \in B) b \in C\]
\[ \Rightarrow (a \in A  b \in C)  (a \in B  b \in C)\]
\[ \Rightarrow (a, b) \in (A \times C)  (a, b) \in (B \times C) \]
\[ \Rightarrow (a, b) \in (A \times C) \cap (B \times C) \]
\[ \therefore (A \cap B) \times C \subseteq (A \times C) \cap (B \times C) . . . \left( iii \right)\]

Again, let (x, y) be an arbitrary element of (A × C) ∩ (B × C).
Thus, we have:

\[(x, y) \in (A \times C) \cap (B \times C)\]
\[ \Rightarrow (x, y) \in (A \times C) (x, y) \in (B \times C)\]
\[ \Rightarrow (x \in A  y \in C)  (x \in B  y \in C)\]
\[ \Rightarrow (x \in A  x \in B)  y \in C\]
\[ \Rightarrow x \in (A \cap B)  y \in C\]
\[ \Rightarrow (x, y) \in (A \cap B) \times C\]
\[ \therefore (A \times C) \cap (B \times C) \subseteq (A \cap B) \times C . . . \left( iv \right)\]

From (iii) and (iv), we get:
 (A ∩ B) × C = (A × C) ∩ (B × C)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.2 | Q 6 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.


If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that   A × C is a subset of B × D


Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {1, 2}, from the set A × A × A.


If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iii) A × (B ∪ C)


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain of the real valued function of real variable:

(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(iv) \[f\left( x \right) = \sqrt{x - 3}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.

 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×