English

Find the Domain and Range of the Real Valued Function: (Iii) F ( X ) = √ X − 1 - Mathematics

Advertisements
Advertisements

Question

Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 

Solution

Given:

\[f\left( x \right) = \sqrt{x - 1}\]

Domain ( f ) : Clearly, f (x) assumes real values if x - 1 ≥ 0 ⇒ x ≥ 1 ⇒ x ∈ [1, ∞) .

Hence, domain (f) = [1, ∞)
Range of f : For x ≥  1, we have:
x - 1 ≥ 0

\[\Rightarrow \sqrt{x - 1} \geq 0\]
⇒ f (x) ≥ 0
Thus, f (x) takes all real values greater than zero.
Hence, range (f) = [0, ∞) .
 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.3 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.3 | Q 3.03 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).


If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


If A = {1, 2, 3} and B = {2, 4}, what are A × BB × AA × AB × B and (A × B) ∩ (B × A)?


If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].


If A = {−1, 1}, find A × A × A.


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {1, 2}, from the set A × A × A.


If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(i) A × (B ∪ C) = (A × B) ∪ (A × C)


If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iii) A × (B ∪ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iv) (A × B) ∪ (A × C)

 

 


Find the domain of the real valued function of real variable: 

(ii)  \[f\left( x \right) = \frac{1}{x - 7}\]

 


Find the domain of the real valued function of real variable:  

(v)  \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find the domain and range of the real valued function:

(x)  \[f\left( x \right) = \sqrt{x^2 - 16}\]


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1


If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\]  and g(x)

\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).

 
 
 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × A


If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.


State True or False for the following statement.

If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×