Advertisements
Advertisements
Question
State True or False for the following statement.
If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}
Options
True
False
Solution
This statement is True.
Explanation:
Given that: A = {a, b} and B = {x, y}
∴ A × B = {(a, x), (a, y), (b, x), (b, y)}
APPEARS IN
RELATED QUESTIONS
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.
If A = {–1, 1}, find A × A × A.
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × C is a subset of B × D
Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.
The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.
If A = {1, 2} and B = {1, 3}, find A × B and B × A.
If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
If A = {1, 2}, from the set A × A × A.
Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(ii) A × (B ∩ C) = (A × B) ∩ (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iv) (A × B) ∪ (A × C)
If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.
Find the domain of the real valued function of real variable:
(iii) \[f\left( x \right) = \frac{3x - 2}{x + 1}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]
Find the domain and range of the real valued function:
(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]
Find the domain and range of the real valued function:
(iii) \[f\left( x \right) = \sqrt{x - 1}\]
Find the domain and range of the real valued function:
(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]
Find the domain and range of the real valued function:
(vii) \[f\left( x \right) = - \left| x \right|\]
Find f + g, f − g, cf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{ and } \frac{f}{g}\] in :
(a) If f(x) = x3 + 1 and g(x) = x + 1
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?
If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.