English

Find the Domain and Range of the Real Valued Function: (Ii) F ( X ) = a X − B C X − D - Mathematics

Advertisements
Advertisements

Question

Find the domain and range of the real valued function:

(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]

 

 

Solution

Given:

\[f\left( x \right) = \frac{ax - b}{cx - d}\] 
Domain of f : Clearly,  (x) is a rational function of x as \[\frac{ax - b}{cx - d}\] is a rational expression.
Clearly, f (x) assumes real values for all x except for all those values of x for which ( cx - d) = 0, i.e. cx = d.
\[\Rightarrow x = \frac{d}{c}\] Hence, domain ( f ) = \[R - \left\{ \frac{d}{c} \right\}\] Range of f :
Let f (x) = y ⇒ (ax -b) = y( cx -d)
⇒ (ax - b) = (cxy - dy)
⇒ dy - b = cxy - ax 
⇒ dy  - b = x(cy - a)
 \[\Rightarrow x = \frac{dy - b}{cy - a}\]
Clearly, f (x) assumes real values for all x except for all those values of x for which ( cya) = 0, i.e. cy = a.
\[\Rightarrow y = \frac{a}{c}\] Hence, range ( f ) = \[R - \left\{ \frac{a}{c} \right\}\]
 
 
 
 

 
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.3 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.3 | Q 3.02 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.


If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.


Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A = {1, 2, 3} and B = {2, 4}, what are A × BB × AA × AB × B and (A × B) ∩ (B × A)?


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


If A = {−1, 1}, find A × A × A.


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}


If A = {1, 2}, from the set A × A × A.


If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(ii) (A × B) ∩ (A × C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iv) (A × B) ∪ (A × C)

 

 


Find the domain of the real valued function of real variable: 

(i)  \[f\left( x \right) = \frac{1}{x}\]

 


Find the domain of the real valued function of real variable: 

(iv)  \[f\left( x \right) = \frac{2x + 1}{x^2 - 9}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain of the real valued function of real variable:

(iv)  \[f\left( x \right) = \frac{\sqrt{x - 2}}{3 - x}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(vii)  \[f\left( x \right) = - \left| x \right|\]

 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B


If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)


State True or False for the following statement.

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.


State True or False for the following statement.

If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×