Advertisements
Advertisements
Question
Find the domain and range of the real valued function:
(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]
Solution
(i)
Given:
\[f\left( x \right) = \frac{ax + b}{bx - a}\]
Domain of f : Clearly, f (x) is a rational function of x as
\[\frac{ax + b}{bx - a}\] is a rational expression.
Clearly, f (x) assumes real values for all x except for all those values of x for which ( bx-a) = 0, i.e. bx = a.
⇒ (ax + b) = (bxy -ay)
⇒ b + ay = bxy -ax
⇒ b + ay = x(by - a)
APPEARS IN
RELATED QUESTIONS
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).
If A = {–1, 1}, find A × A × A.
If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.
If A = {1, 2} and B = {1, 3}, find A × B and B × A.
If A = {1, 2, 3} and B = {2, 4}, what are A × B, B × A, A × A, B × B and (A × B) ∩ (B × A)?
If A = {−1, 1}, find A × A × A.
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).
If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(iii) A × (B − C) = (A × B) − (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(i) A × (B ∩ C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(ii) (A × B) ∩ (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iii) A × (B ∪ C)
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{x - 7}\]
Find the domain of the real valued function of real variable:
(iv) \[f\left( x \right) = \frac{2x + 1}{x^2 - 9}\]
Find the domain of the real valued function of real variable:
(v) \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]
Find the domain of the real valued function of real variable:
(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]
Find the domain and range of the real valued function:
(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]
Find the domain and range of the real valued function:
(iii) \[f\left( x \right) = \sqrt{x - 1}\]
Find the domain and range of the real valued function:
(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]
Find the domain and range of the real valued function:
(vi) \[f\left( x \right) = \left| x - 1 \right|\]
Find the domain and range of the real valued function:
(vii) \[f\left( x \right) = - \left| x \right|\]
Find the domain and range of the real valued function:
(x) \[f\left( x \right) = \sqrt{x^2 - 16}\]
If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\] and g(x)
\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?
If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.
Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B
If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)
State True or False for the following statement.
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.