English

Find the Domain of the Real Valued Function of Real Variable: (Iv) F ( X ) = √ X − 2 3 − X - Mathematics

Advertisements
Advertisements

Question

Find the domain of the real valued function of real variable:

(iv)  \[f\left( x \right) = \frac{\sqrt{x - 2}}{3 - x}\]

 

Solution

(iv) Given:

\[f\left( x \right) = \sqrt{\frac{x - 2}{3 - x}}\]

Clearly, (x) assumes real values if
x -2 ≥ 0 and 3-x > 0
⇒ x ≥ 2 and 3 > x
⇒ x ∈ [2, 3)
Hence, domain ( f ) = [2, 3) .

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.3 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.3 | Q 2.4 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that   A × C is a subset of B × D


Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


If A = {1, 2, 3} and B = {2, 4}, what are A × BB × AA × AB × B and (A × B) ∩ (B × A)?


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


Let A = {1, 2, 3, 4} and R = {(ab) : a ∈ Ab ∈ Aa divides b}. Write R explicitly. 


If A = {1, 2}, from the set A × A × A.


If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(i) A × (B ∪ C) = (A × B) ∪ (A × C)


If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


Find the domain of the real valued function of real variable: 

(iii) \[f\left( x \right) = \frac{3x - 2}{x + 1}\]

 


Find the domain of the real valued function of real variable: 

(iv)  \[f\left( x \right) = \frac{2x + 1}{x^2 - 9}\]

 


Find the domain and range of the real valued function:

(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]

 

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in : 

(b) If \[f\left( x \right) = \sqrt{x - 1}\]  and  \[g\left( x \right) = \sqrt{x + 1}\]

 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)


State True or False for the following statement.

If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}


State True or False for the following statement.

If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×